
The Emperor's New Repository

I don't know the first thing about building digital repositories. Maybe
that's a strange thing to say, given that I work in a repository development
group now, and worked on the original DSpace project years ago, and
worked on a few repository research projects in between. If that qualifies me
to say anything about repositories, though, it's just that I don't know much
about what I'm doing, and I don't think many other people do, either.

I'd better qualify that some. It's not that there aren't smart people
working on repositories -- there are plenty. It's not that few repository
projects have good, important objectives -- many do. And it's not that we
haven't learned anything in the past 10-15 years since "digital repositories"
grew from a buzzword into a strategic program in many libraries -- we've
learned a lot. But I don't know what this smart group of people with solid
goals and lessons learned add up to yet.

Does that still sound strange? If it sounds strange to you, try this
thought experiment. Say you get a new job as a director of a small library.
In a new town. Without a library. So it's your job to build a library where
one doesn't exist. What do you do first?

I've never run or built a library before, but I'd guess that you'd need to
start with siting property and working with a city to plan infrastructure. Then
come architectural design and construction bids, and when you're far
enough along to plan what goes in the building itself you split out budget
lines for staffing different departments, and furniture and shelving of several
different kinds, and a floor plan, and meeting rooms and utility functions.
Maybe you only can hire a few people, but you know you need to cover
collection development, public and technical services, computing,
accounting and payroll, and maintenance, whether with three people on
staff or 30.

See? I don't know the first thing about running a library, but I know
you'd better plan for at least all these things. You're probably thinking of

other things I didn't mention, whether you've ever run a library or not.

Now suppose you were hired to be a digital repository project director.
For a new repository, which doesn't exist yet. What do you do first?

Eh?

I don't know, either. And that's what I mean!

Collect what you know

Given how long I've been around people and projects aiming to "build
repositories", and how little confidence I have that we know what it really
means to build a repository, I'd guess there are plenty of you who don't
know, either. On one hand, sometimes it's okay not to know -- if you have a
good goal in mind, like collecting faculty research, or making rare local
materials available, the details of how you achieve your goal are less
important than regularly measuring against the yardstick itself. I'd bet,
though, that there are plenty of projects that don't even have this much
clarity driving them. Absent such clarity, there are a lot of mistakes you can
make along the way to achieving clarity in determining why you want a
repository.

The first mistake to avoid is fetishizing software products or projects.
Over the years I've had a lot of conversations with friends and colleagues
who've asked "do you think
Greenstone/Fedora/DSpace/EPrints/ContentDM/etc. is what we should use?"
My answer these days is almost always the same: "it depends on what
you're doing, but you can always start with one or another and decide after
you have some experience, and they're all a good place to start, so just pick
one and get started." There isn't any single answer and there isn't any clear
winner. In an era when we're still trying to figure out what it means to build
a repository, it's great that there are so many options, and it's wonderful that
there are so many free software options. If you think you need specialized
software to build your repository, then the key thing is to get started with a
tool that looks like a roughly good fit. You're going to learn so much along

the way that the details of whether that tool's the best long term fit or not are
going to become obvious to you as you build up experience loading your
content and making it available.

The flip side of avoiding agonizing over which tool to pick is that you
shouldn't hesitate, once a project takes some turns you don't like, to
acknowledge that maybe you've made a bad choice with a particular toolkit,
or that maybe you just approached the project the wrong way, with the
wrong materials at first, or with the wrong staff, or even just at the wrong
time. There's a software development axiom from Frederick Brooks, author
of _The Mythical Man Month_, that applies well here: "Plan to throw one
away; you will, anyhow." To plan for mistakes means to be ready to learn
from them when they happen, and to minimize the cost in energy and
expense when things go wrong. Start with a small collection, minimal staff,
and a short timetable, and see what you can learn by building something
quickly. All the feature comparison spreadsheets and RFPs in the world
won't help you make a good decision if you haven't already started up the
learning curve for yourself.

There's a broader point to remember here, too, that software isn't
usually part of our collection development plans. We librarians know
approval plans, cataloging standards, and search strategies, but selecting and
implementing software isn't our strength. There, I said it: we're not good at
this. But that's okay! Like a reference librarian assigned to select materials
in a new collection area, we can learn as we go. The key steps are to get
started, and to expect to make mistakes, but to be ready to learn from your
mistakes.

I'll let you in on another secret of repository building. Adding new
software isn't always the best approach to building a repository. Sometimes
it's not only a mistake to introduce new layers of software between content
and users or between content and staff, it's just a bad idea, period. You're
probably comfortable, by now, with putting a web page online, and setting
up a directory on a web server with some new files, or if you're not
comfortable performing these tasks, you probably have colleagues or staff
who are capable and experienced with basic web publishing. If you have a

small collection of digitized or born digital items, and your primary goal is to
get it online, the easiest thing to do might be to just put it online in a simple
directory or two with some web pages listing and describing it all. Make a
backup, too, or two, of course. But most of us with web sites can get some
new files linked from a library's home page pretty easily these days. If you
can do that, your users can find it from your home page, and even if they
never visit your home page, the major search engines can find your items
and crawl and index them, so maybe your users can find things that way.

If you think this sounds defeatist or desperate, don't think that -- I mean
just the opposite. Sometimes the shortest path between users and content is
simply putting the content where users have a chance at finding it. The web
does this very well for us. I've administered enough web sites and odd
software packages over the years to know well that the content that lasts
online the longest is almost always the content with the least amount of stuff
around it that can go wrong. Whether it's an old programming language or a
bad script or an odd toolkit few people ever used, if the only way to get to
your stuff is through some oddly-shaped software that's out of date and
unreliable, someday nobody's going to be able to get to your stuff anymore.
If, on the other hand, the same content is simply available over the web like
any other web content, just a bunch of files in a directory on a web server,
then that content can be indexed and reindexed by Google et al., copied and
recopied onto different servers by you and your staff, and migrated across
changes in web server and operating system software choices over time.

We are the repository

The second mistake to avoid is forgetting that we are the repository.
Every software repository I've helped to build has faced complex issues of
planning and policy which had little to do with technology and everything to
do with how to build a sustainable program for ensuring access over time.
Remove any special software from the equation completely -- like in the case
of "just a few directories on a web server" -- and planning and policy issues
still come into play. Like with any other materials in a library, it's ultimately

up to those of us working in the library to set, maintain, and uphold policies
for collection development, access, maintenance, and retention. If
repository technology gets in the way of making policy choices that fit in
with your broader institutional mission, something might be wrong.

Optimize for access

A third mistake that's easy to make is to over-think what a "digital
object" might be. I fall into this trap all the time, even with a few rounds of
experience under my belt. If you focus on making some content available,
using one specialized tool or another or none at all, and that content is
useful to your community, its users will tell you how they want to use it.
This is another concept echoed both in the "release early and release often"
mantra of free software development and the "don't make me think" school
of usability testing. Real feedback from real users will tell you the most
about features your repository should add or improve, or when one degree
more or less of descriptive metadata will make items easier to find or will
cost you a ton without really helping people.

If, before "just giving it to people", you spend months or years designing
specifications for "complex objects" and hammering structural metadata and
content files into shape to match before ever giving your users a chance to
see that content, you might just find that you've spent a lot of time and
energy without knowing a bit about what people want to do with your stuff.
It's possible that you'll guess correctly about what to call files and how to
relate files and metadata to each other and store all of that on disk, but that
might not help your users at all. Give three programmers a pile of files and
ask them to arrange it and you'll get five system designs for how to do it in
four different programming languages and database models, but none of that
tells you whether your users will use any of it.

The best thing about letting users drive what you do, when it works (I
know how hard it can be just to get feedback sometimes), is that it lets you
build incrementally. Maybe you start with a simple set of collections
published in a few directories and not a lot more. If your users are happy

with that, maybe you can stop there. But if they ask for the ability to search
across it all, or to browse it all by subjects, or for specialized functions like
being able to zoom in on large images, for instance, maybe that's a reason to
look deeper at a specialized software package to augment or replace your
"files on disk" setup. If you try a new package, look to your user community
to tell you whether it does the job better.

I know this advice isn't going to "solve your repository problem" for
you. But if you avoid over-thinking software choices and you avoid over-
thinking the complexity of your content, you might find that there are
immediate, cost-effective choices available to you that can help your
community soon and teach you a lot along the way. And if you focus on
optimizing access to meet your community's needs, you might find that the
policies you'll need to sustain digital materials over time might match how
you do everything else already. In five, ten, and twenty years, after all, any
software you use today is likely to be obsolete, but it'll still be your
responsibility to make and keep your content available and useful to your
community.

